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More about general saddlepoint approximations

Suojin Wang

Department of Statistical Science

Southern Methodist University

SUMMARY

In Easton and Ronchetti (1986), a method of general saddlepoint approximations is proposed and

shown useful, especially in the case of small sample sizes. A possible improvement of the method is

suggested to prevent its potential deficiences and increase its applicability. Easton and Ronchetti's

approximation and its modified version are extended to bootstrap applications. These results provide a

satisfactory answer to Davison and Hinkley's (1988) open question on the bootstrap distribution in the

AR(1) model. Numerical examples show the great accuracy of the modified method even when the

original approximation fails dramatically.

Key Words: Autoregressive model; Beta distribution; Bootstrap; Edgeworth expansion; Mean

estimation; Nonlinear statistics.

1. INTRODUCTION

The technique of saddlepoint expansions, introduced into the statistics literature by Daniels

(1954), has been shown to be an important tool in statistics. Among other papers, Barndorff-Nielsen

and Cox (1979) and Reid (1988) provide excellent discussions on saddlepoint approximations in the

parametric context. Applications to nonparametric analysis can be found in Robinson (1982) and

Davison and Hinkley (1988), the latter applied the saddlepoint method to bootstrap and randomization

problems. Most of the applications are limited to simple statistics, such as the sample mean, with the

known cumulant generating functions (CGF), since the CGF's are explicitly needed in the calculations

of the approximations. Recent extensions to some specific nonlinear statistics by Srivastava and Yau

(1989) and Wang (1990b) require similar conditions.

An alternative approach was proposed by Easton and Ronchetti (1986), who use the first four

terms of the Taylor series expansion to approximate the CGF. Thus, only the first four cumulants are

required for saddlep-int approximations. We now briefly review this approach.

Suppose that interest is in the density fn(x) and the cumulative distribution Fn(x) of some

statistic Vn(Xi, . . . , Xn), where X1, . . . , Xn are iid observations. Assume that the cumulant

generating function Kn(t), which may be unknown, of Vn exists for real t in some nonvanishing
1 r*J
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interval that contains the origin. Let fcin be the ith cumulants of Vn, i = 1, 2, 3, 4. Then KW = Pn

- E(Vn) and 'C2n = O= var(Vn). When Kn(t) is unknown or difficult to evaluate, Easton and

Ronchetti (1986) propose to use

in(t) = im t + n + t + ! (1)

to approximate Kn(t). The resulting saddlepoint apporoximations are, for fn(x),

fn(x) = [2r . ,o] en{Rn(TO) - T0 x} (2)

and, for Fn(x),

-n(x) = (*) + 0(*)(*1 - (3)

where ftn(T) = kn(nT)/n, To is determined as a solution to

ftn(TO) = x, (4)

4, and t are the standard normal density and distribution function respectively, , = [2n{Tox -

ltn(T0 )}]1/2sgn(T 0 ) and i = To{nln(T 0 )}1/2 . Formulas (2) and (3) correspond to the classical

saddlepoint formulas; see Daniels (1987). Formula (3) was not explicitly given in Easton and

Ronchetti (1986). Instead they used numerical integrations over (2) to approximate Fn. Under mild

regularity conditions on Vn to ensure the validity of the Edgeworth expansion, using the Edgeworth

and saddlepoint expansions (Easton and Ronchetti, 1986), it is easily shown that approximations (2)

and (3) have relative error of O(n- 1) for all x such that I X-PnI _< d/n1/ for any fixed constant d.

Numerical examples (Easton and Ronchetti, 1986; Wang, 1990b) show that these approximations are

often satisfactory and they overcome some deficiencies that the Edgeworth approximations could have,

such as negative tail probabilities.

A drawback of the approximations is that, contrary to Easton and Ronchetti's claim, the solution

to (4) may not be unique. This phenomenon could happen more often in bootstrapping applications

where the cumulants are estimated. In such cases, the approximations could fail to work in tail areas

in which we are particularly interested.

In this note, we first extend Section 2. To a greater extent, Section 3 considers a simple

modification of their method, which avoids the problem of multiple roots and at the same time retains

the same order of the accuracy. The modified method is then extended to bootstrap applications in

Section 4. A satisfactory answer to the open question on the bootstrap distribution in the AR(1) model

2



raised by Davison and Hinkley (1988) is obtained by straightforward applications of the results. Some

numerical examples are given.

2. BOOTSTRAP APPLICATIONS

Our goal is to approximate

Fn(x) = pr(Vn < x l F), (5)

where Vn = Vn(Xi,..., Xn) is a (approximate) pivotal quantity (Hinkley, 1988), F is the underlying

distribution of the observations; e.g., in the location problem let Vn = X - p. Let F be the empirical

distribution function. A bootstrap method is to approximate Fn(x) by the bootstrap distribution

Fn(x) = pr(V* <xl F), (6)

where V* = Vn(X, . .., X*), X* are sampled from F (e.g., in the location problem, V* = -

The exact values for fn(x) are usually difficult to obtain and therefore approximations are desirable.

Numerical simulation is a simple method but it could be costly. In the location problem and other

simple situations, Davison and Hinkley (1988) suggest a very efficient alternative, namely, bootstrap

saddlepoint approximations. The main step is to use the conditional (given the data) CGF,

f((t) = log{1  exp(tXi)} , (7)
1

to replace K(t) in the classical saddlepoint formulas (Daniels, 1987).

For more general Vn, it is possible to extend Easton and Ronchetti's method similarly as they

have suggested as a further research problem. Let kin be the ith conditional cumulants of V* given F,

i= 1, 2, 3, 4, and

!2=2 3 ts 3 4n t 4 (8
K(t) kint + .nt2+il.n  +"h. (8)

Replacing Kn by Kn in (3), we have the corresponding saddlepoint formula for Fn(x):

Fn(x) = + (+ )(+- - +-1) (9)
Rhr }] 2nTx -1/2 "T)'/

where S = [2n{Tox n(To)1] sgn(T 0 ), z = T0{n Rn (T0)}i/2 n(T) - lKn(nT)/n and To is

a solution to
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lk(T 0 ) = x. (10)

Using an argument of the Edgeworth and saddlepoint expansions parallel to that in Section 2 of

Easton and Ronchetti (1986) and by a treatment on the discreteness problem similar to that in Wang

(1990a), it is easily seen that with a negligible numerical error, uniformly

Fn(x) = Fn(x){1 + Op(n-') , (11)

for I x - kin - dn/2, i.e., the error term is of order n - 1 uniformly, aside from a very small

numerical error caused by the discreteness originated from f. The following example illustrates the

usefulness of the approximation.

Example 1. Assume that data are modelled by the autoregressive process

Xi= OXi-I + i (i =1, .. . ,n), X0 = 0 ,

where ci have a common symmetric distribution, and that one wishes to test H0: 0=0. A test statistic

is
n n V

Wn EX Xi/j 2

2 1

Notice that under H0, E(Wn) = 0 and Wn is independent of the scale parameter. The corresponding

resampled statistic is

2 1

where X* are independently resampled from (± X1, • • • , + Xn) due to its symmetry. Davison and

Hinkley (1988) have considered this problem by using the simpler resampling scheme of randomization

and raised the opcn question about the distribution of W* under the above bootstrap resampling

scheme. Noticing that

where V* = (E X_ X - EY*)/n, Y = x(X . 2 - EX?/n) and z = xE X./n, we need only to

focus on V*. It is easily obtained that

kin = 0,
4



(r, x?) 2 +1 ?

= 6 (n- I l EX ?XY \ rY?
n ( x?" ) '

:3n - n5  1 X1 i ) 3 ,

n-i 2  6(n-2) 2 3(3n-5) 4

'4n n 1X4 I x nX

+ 12 (n-)(E rx 2y + 1 3EY- (E Yi) 2

nn
4  n5

where Yi x(X? - r X?/n). It is now straightforward to apply formula (9). To illustrate, consider

the following data set (n=33) from Ogbonmwan and Wynn (1988), which was simulated from Normal

(0,1) errors under H0:

(0) -0.625 -0.631 0.290 -1.402 -0.684 0.562 2.737 -0.027

-0.085 -0.151 -0.766 0.415 0.490 1.222 -1.590 -0.262 -2.001

0.679 -1.128 1.075 -0.206 -1.447 -2.287 -1.468 0.0415 1.166

-1.270 -1.712 -1.391 -0.263 1.386 -0.278 -1.343

The "exact" bootstrap distribution, obtained by 105 simulations, and the saddlepoint and normal

approximations are given in Table 1. The modified saddlepoint approximation will be addressed in the

next section. The example shows that the saddlepoint approximations are very satisfactory except in

the extreme area where it gets slightly worse, but is still much better than the normal approximation.

3. MODIFIED METHOD

It is possible that (4) or (10) have multiple roots for various x. A simple example is the sample

mean of the Bernoulli distribution. When the parameter p=1 we have Kin = 1, K2n = , K3n = 0,

K4n= and therefore

ft'(T) = + T T 3

n 2 4 8.3!

It is clear that multiple roots to (4) exist. More examples will be discussed shortly. In such

problematical case, it is natural to select the root nearest to zero. However, when x moves away from

the mean, a proper solution may not exist. This phenomenon may cause a considerable problem as we

will see in the examples.
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We now propose a simple modification to prevent such undesirable feature while retaining the

validity of the numerical accuracy as well as the asymptotic property. Let

Kn(t; b)= int + t2n + +t3  t4 g(t) (13)
2! (3! +4! b

where gb(t) = exp{-t 2/(n 3
2nb 2 )} and b is a properly chosen constant. The modified method is to

replace Kn(t) in (1) by kn(t; b), obtaining modified fn(x; b) and Fn(x; b) corresponding to (2) and

(3), respectively. Notice that the solution T = TOb) to

ln(T, b) = x (14)

is always unique for a proper domain of x and suitable b, where Rn(T; b) = IKn(nT;b)/n. By suitable

rescaling we assume that #in = O(n'-i), i = 2, 3, 4. When t = O(n/2 ), gb(t) = 1 + O(n - ') and

therefore kn(t; b) = Kn(t) + O(n-3/2). Thus it is easily shown as in Section 2 of Easton and
1/2 (b) 1/2

RBonchetti (1986) that when I x - PnI < d/n , nT 0  = O(n ) and therefore fn(x; b) and Fn(x; b)

are correct up to O(n - 1) uniformly.

Note that asymptotically b can be any fixed constant in (13). But in practice we suggest that b

be 23/2 or a suitably larger constant so that R' (T; b) is strictly increasing (i.e., Rn(T; b) > 0) in a

sufficiently large interval U on the x-axis on which the distribution function is desired. If in fact

lt (T) > 0 on such U and thus b = 23/2 the modification has little effect. This phenomenon is

supported by the calculations of Fn(x; b) in the two examples of L statistics in Easton and Ronchetti

(1986) as well as other examples. Notice that Fn(x; b)--+Fn(x) as b--40 whereas it approaches to the

normal approximation as b--+oo. It is therefore always possible to find b large enough to guarantee

lRtn(T; b) > 0 on U.

We now consider an example where the modification is shown to be useful. In the illustration we

focus on the cumulative distribution.

Example 2. In this example we wish to approximate the distribution of sample mean of the Beta

distribution. Let X1 , ... , Xn be a sample from B(p,q). The moment generating function is

r(p+q) r(p+j)
M(t)= (p) r(p+q+j) r+1)'

which makes it very difficult to calculate the classical saddlepoint approximations. It is, however, easy

to obtain the central moments of X (Johnson and Kotz, 1970, p.40):
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t p[i]

"in (q[i]nii' =1,2,3,4,
(np+q) 1ini

where yi] = y(y+l) ... (y+i-1) is the ascending factorial.

To be specific, let p = 2, q = 5, and n = 5. Then simple calculations show that Icin = 2/7, x2n

- 0.005102, X3 11 = 9.718 X 10- 5, #C4n = -6.247 X 10- 7 . Table 2 provides the original and the

modified (b = 2 / 2) Easton and Ronchetti approximations, the normal and the second order

Edgeworth approximations and the "exact" values obtained by 105 simulations. This table shows that

Easton and Ronchetti's method works well for x > 0.18 but starts losing its accuracy at x = 0.17.

For x < 0.17, no suitable solution T o to (4) exists, so that the method fails to work at all. The

modified method overcomes this problem and continues to provide very accurate apporximation for x

< 0.17. It has the bes, overall performance among the listed methods.

4. MODIFIED METHOD IN BOOTSTRAP APPLICATIONS

It is straightforward to extend the modified method to the bootstrap context. Referring to (13),

let

Kn(t; b) = kint + 2! + -! + 4! ) t b(t), (15)

where gh(t) = exp{-t 2 /(n3 k 2nb2 )} and the constant b is chosen according to the same suggestions as

in Section 3. Replacing K(t) by K(t; b) in (9) we obtain the modified saddlepoint formula Fn(x; b) for

the bootstrap distribution Fn(x). Combining the results in Sections 2 and 3, we obtain that for x -

Pn = O(n-1/2)

Fn(x; b) = Fn(x) {1 + Op(n- 1 )} , (16)

aside from a negligibly small numerical error due to discreteness. As in the parametric case, the

modification has little effect when the original method works well; see Table 1. However, it may

provide substantial improvement otherwise.

Example 3. We continue to consider the problem in Example 1, but assume that n = 10. The

following data set was simulated from the mixture of normals !N(-1, 0.2) + !(1, 0.2):

-1.240 -0.912 1.098 -1.209 0.838 -1.115 1.088 0.806 -0.896
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The same calculations were performed as in Example 1. The results given in Table 3 show a pattern of

the original and the modified saddlepoint methods that is similar to the one in Table 2. This example

demonstrates the applicability of the modified method in nonlinear bootstrap problems.

Example 4. In the final example, we make a comparison between the modified method and Davison

and Hinkley's (1988) boostrap saddlepoint method in the setting of bootstrapping a sample mean. Let

w*= -

corresponding to Wn = X - p. Given the sample of n = 10 values (Davison and Hinkley, 1988),

9.6 10.4 13.0 15.0 16.6 17.2 17.3 21.8 24.0 33.8

it is easily calculz.oed that kin = 0, k 2n = 4.6532, 'an = 3.2094 and k 4n = 0.95147. Table 4 is

reproduced from Table 1 of Davison and Hinkley (1988) except for the entries for Easton and

Ronchetti's approximation (ERS) and its modified version (MERS) with b = 23/2. The modified

approximation is almost as good as that of Davison and Hinkley (DHS), although it uses relatively less

information from the data and requires relatively less computing time. Notice that MERS is slightly

better (worse) than DHS in the upper (lower) extreme tail and it is slightly wider in the extreme tails.

Easton and Ronchetti's method works as well as MERS on the upper tail until x gets close to -3.5

where its performance gets worse sharply. Note that pr(X* - X < -3.5 1 P) - 0.04. No suitable

solution to (10) exists for x < -4.01. The normal and Edgeworth approximations which are given in

Davison and Hinkley (1988) are not as accurate as those of DHS and MERS.

5. CONCLUDING REMARKS

In this note we have developed extensions of Easton and Ronchetti's (1986) useful method for

approximating the distributions of general statistics. In some cases, Easton and Ronchetti's method

fails to work since the approximation (1) or (8) of the CGF may not satisfy the condition of convexity

which is essential in the saddlepoint technique. The theoretically justified modifications remedy this

deficiency and widen the applicability, as supported by the numerical examples. Using the new

developments we have been able to provide a satisfactory answer to Davison and Hinkley's (1988) open

question on the bootstrap distribution of the test statistic in the AR(1) model. Moreover, it is

suggested by Example 2 that in the case of sample mean, Easton and Ronchetti's method or its

modifications could give satisfactory results while the classical formulas are difficult to calculate.
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The methcds are easily implemented in a short FORTRAN program. The roots required in the

approximations can be found by a procedure of bisection search. Example 4 shows that in some simple

bootstrap problems, the modified method accomplishes nearly as much as Davison and Hinkley's

method but requires less calculations. Nevertheless, we reemphasize Easton and Ronchetti's advice

that whenever the CGF is known and easy to implement, one should use the classical formulas.
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Table 1. Approximations to the distribution in the AR(1) model; n = 33.

Modified

x Exact* Fn Saddlepoint Saddlepoint Normal

-. 50 .0010 .0029 .0029 .0072

-.45 .0028 .0053 .0054 .0117

-.40 .0076 .0100 .0101 .0192

-.35 .0173 .0191 .0192 .0316

-.30 .0364 .0365 .0366 .0515

-.25 .0687 .0672 .0673 .0827

-.20 .1192 .1165 .1163 .1294

-.15 .1893 .1871 .1871 .1952

-.10 .2790 .2781 .2780 .2815

-.05 .3849 .3848 .3848 .3855

-. 02 .4536 .4534 .4534 .4536

* obtained by l~s simulations
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Table 2. Approximations to pr(X < x) for Beta (2, 5); n = 5.

Modified

x Exact* Fn  Saddlepoint Saddlepoint Normal Edgeworth

.07 .0001 .0002 .0013 -. 0001

.09 .0006 .0007 .0031 .0003

.12 .0039 .0039 .0102 .0043

.15 .0189 .... 0177 .0287 .0202

.16 .0291 .... 0275 .0392 .0305

.17 .0430 .0534 .0411 .0526 .0444

.18 .0608 .0672 .0592 .0694 .0623

.20 .1118 .1155 .1103 .1151 .1124

.25 .3222 .3238 .3229 .3085 .3231

.30 .5945 .5947 .5946 .5793 .5948

.40 .9375 .9382 .9378 .9452 .9383

.50 .9971 .9971 .9972 .9987 .9973

.55 .9996 .9996 .9996 .9999 .9997

.58 .9999 .9999 .9999 1.0000 1.0001

• obtained by 105 simulations; " " not available.
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Table 3. Approximations to the distribution in the AR(1) model; n = 10.

Modified

x Exact* Fn Saddlepoint Saddlepoint Normal

-. 90 .0003 .0001 .0019

-. 80 .0019 .0008 .0048

-. 75 .0029 .... 0030 .0074

-. 70 .0083 .0088 .0112

-. 65 .0163 .0141 .0168

-. 60 .0203 .0219 .0246

-. 59 .0210 .0239 .0265

-. 58 .0220 .0346 .0259 .0285

-. 50 .0488 .0503 .0484 .0497

-. 40 .0918 .0949 .0940 .0928

-. 30 .1653 .1638 .1634 .1597

-. 20 .2565 .2578 .2576 .2529

-. 10 .3732 .3728 .3728 .3695

• obtained by 105 simulations; "_ " not available
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Table 4. Approximations to resampling percentage points of X-p

Probability Exact* DHS ERS MERS Normal

.0001 -6.34 -6.31 - -6.56 -8.46

.0005 -5.79 -5.78 - -5.88 -7.48

.001 -5.55 -5.52 - -5.56 -7.03

.005 -4.81 -4.81 -4.77 -5.86

.01 -4.42 -4.43 - -4.39 -5.29

.05 -3.34 -3.33 -3.38 -3.31 -3.74

.10 -2.69 -2.69 -2.71 -2.68 -2.91

.20 -1.86 -1.86 -1.87 -1.86 -1.91

.80 1.80 1.80 1.79 1.79 1.91

.90 2.87 2.85 2.84 2.85 2.91

.95 3.73 3.75 3.74 3.74 3.74

.99 5.47 5.48 5.48 5.47 5.29

.995 6.12 6.12 6.13 6.12 5.86

.999 7.52 7.46 7.51 7.48 7.03

.9995 8.19 7.99 8.06 8.02 7.48

.9999 9.33 9.12 9.26 9.18 8.46

• obtained by 5X10 4 simulations; "__ not available
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